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a b s t r a c t

A general theory for the determination of natural frequencies and mode shapes for a set

of elastically connected axially loaded Euler–Bernoulli beams is developed. A normal-

mode solution is applied to a set of non-dimensional coupled partial differential

equations. The natural frequencies are the eigenvalues of a matrix of differential

operators. The matrix operator is shown to be self-adjoint leading to an orthogonality

condition for the mode shapes.

In the special case of identical beams, it is shown that the natural frequencies are

organized into sets of intramodal frequencies in which each mode shape is a product of

a spatial mode and a discrete mode. An exact solution is available for the general case.

However the natural frequencies and mode shapes are then determined using a

complicated numerical method. A Rayleigh–Ritz method using mode shapes of the

corresponding unstretched beams is developed as an alternative.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The problem considered is the free vibrations of a set of n axially loaded Euler–Bernoulli beams connected by elastic
layers and connected to a Winkler type foundation as illustrated in Fig. 1.The linear free vibrations of a single axially loaded
Euler–Bernoulli beam is well documented [1,2].

Vibrations of composite material have been modeled by elastically connected beams [3]. Researchers have studied the
free and forced vibrations of elastically connected double Euler–Bernoulli beams [4–8], and double and triple Timoshenko
beams [9,10]. Chen and Sheu [3] studied an axially loaded double Timoshenko beam. Most researchers used a normal-mode
assumption leading to a set of ordinary differential equations from which the natural frequencies and mode shapes are
attained. Some, [3,10], employed a dynamic stiffness matrix approach.

Researchers have used elastically connected concentric beams as continuous system models for carbon nanotubes
[11–13]. The elastic layers provide a linear model for inter-atomic Van der Waals forces. The tensile strength and elastic
modulus of multiwall carbon nanotubes have been shown to increase when the tubes are stretched [14,15]. Manufacturing
of such tubes often occurs in a polymer gel. A model of elastically connected stretched beams may be used as a first attempt
at continuous system modeling of vibrations of stretched nanotubes. An elastic layer surrounding the tube is used to model
the polymer gel.

This paper presents a general theory for the free response of elastically connected axially loaded beams. A set of coupled
partial differential equations governing the free response of a set of n elastically connected axially loaded beams is
presented and non-dimensionalized. For generality, the beams may also be attached to a Winkler foundation. The general
mathematical theory for a normal-mode solution is developed in Section 2 and discussed in Section 3. The resulting
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Fig. 1. A set of n elastically connected free–free beams.
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ordinary differential equations are summarized in a matrix form leading to an eigenvalue–eigenvector problem to
determine the natural frequencies and mode shapes. The general theory of the eigenvalue problems is discussed and an
exact solution obtained. However, as noted by Williams [16], when studying the equation for a single axially loaded beam,
numerical difficulties arise in the determination of natural frequencies due to the presence of exponentially large terms.
The special case of a set of identical beams is considered in Section 4, while a Rayleigh–Ritz method which may be used for
a general set of beams is developed in Section 5.
2. General theory

The problem considered is that of a set of n elastically connected axially loaded Euler–Bernoulli beams. The ith beam is
made of a material of elastic modulus Ei and mass density ri and has a cross-section with a uniform cross-section of area Ai

and moment of inertia Ii. Each beam is subject to the same tensile axial load P. The ith beam and the i plus first beam are
connected by a continuous linear elastic layer of the Winkler type of stiffness per length ki. The first and nth beams are
connected to Winkler foundations of stiffness per length of k0 and kn, respectively. Each beam is of length L and all beams
have identical supports. The transverse displacement of the ith beam is wiðx; tÞ.

Application of extended Hamilton’s principle to a differential element of each beam leads to the following set of coupled
differential equations:

E1I1
q4w1

qx4
� P

q2w1

qx2
þ k0w1 þ k1ðw1 �w2Þ þ r1A1

@2w1

@t2
¼ 0, (1a)

EiIi
q4wi

qx4
� P

q2wi

qx2
þ ki�1ðwi �wi�1Þ þ kiðwi �wiþ1Þ þ riAi

q2wi

qt2
¼ 0 (1b)

for i ¼ 2;3; . . . ;n� 1, and

EnIn
q4wn

qx4
� P

q2wn

qx2
þ knwn þ kn�1ðwn �wn�1Þ þ rnAn

q2wn

qt2
¼ 0. (1c)

Non-dimensional variables are defined according to

x� ¼
x

L
, (2a)
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t� ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1I1

r1A1L4

s
, (2b)

and

w�i ¼
wi

L
. (2c)

Introduction of Eq. (2) in Eq. (1) leads to

m1
q4w1

qx4
� �

q2w1

qx2
þ l0w1 þ l1ðw1 �w2Þ þ b1

q2w1

qt2
¼ 0, (3a)

mj

q4wj

qx4
� �

q2wj

qx2
þ lj�1ðwj �wj�1Þ þ ljðwj �wjþ1Þ þ bj

q2wj

qt2
¼ 0 (3b)

for i ¼ 2;3; . . . ;n� 1, and

mn
q4wn

qx4
� �

q2wn

qx2
þ ln�1ðwn �wn�1Þ þ lnwn þ bn

q2wn

qt2
¼ 0. (3c)

The * have been dropped from all variables in Eq. (3); all dependent and independent variables are non-dimensional.
Non-dimensional parameters are defined as

mj ¼
EjIj

E1I1
; (4a)

bj ¼
rjAj

r1A1
, (4b)

lj ¼
kjL

4

E1I1
; (4c)

and

� ¼
PL2

E1I1
. (4d)

A normal-mode solution of Eq. (3) is assumed as

wiðx; tÞ ¼ uiðxÞe
iot , (5)

where uiðxÞ is the spatially dependent mode shape of the ith beam corresponding to the natural frequency o. The result of
substitution of Eq. (5) in Eq. (3) is summarized in a system of simultaneous ordinary differential equations summarized in
matrix form as

Kþ Kcu�o2Mu ¼ 0, (6)

where u is a vector whose components are the spatial mode shapes and K the structural stiffness operator matrix which
can be written as

K ¼ Kb þ Ka (7)

in which Kb is a diagonal operator matrix representing the bending stiffness with

ðKbÞi;i ¼ mi
q4

qx4
, (8)

Ka is a diagonal operator matrix representing the axial stiffness with

ðKaÞi;i ¼ ��
q2

qx2
, (9)

Kc is a tri-diagonal matrix of coupling stiffnesses due to the elastic layers with

ðKcÞi;i�1 ¼ �li�1; i ¼ 2;3; . . . ;n,

ðKcÞi;i ¼ li�1 þ li; i ¼ 1;2; . . . ;n,

ðKcÞi;iþ1 ¼ �li; i ¼ 1;2; . . . ;n� 1, (10)
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and M is a diagonal mass matrix with

mi;i ¼ bi. (11)

Eq. (6) may be rewritten as

M�1ðKþ KcÞu ¼ o2u. (12)

It is clear from Eq. (12) that the natural frequencies are the square roots of the eigenvalues of M�1ðKþ KcÞ and the mode
shapes are the corresponding eigenvectors.

Consider the operator

Li ¼ mi
q4

qx4
� �

q2

qx2
. (13)

It is easy to show [2] that this operator is self-adjoint with respect to the standard inner product on C4
½0;1�when the ends

are fixed, pinned, free or connected to an elastic element. This implies that for any f(x) and g(x) that satisfy boundary
conditions for such supports

Z 1

0
½Lif ðxÞ�gðxÞdx ¼

Z 1

0
f ðxÞ½Lif ðxÞ�dx. (14)

Furthermore, unless the beams have free–free or pinned–free end conditions the operator is also positive definite with
respect to this inner product. In these exceptional cases the operator is non-negative definite.

The solution vector u ¼ ½u1ðxÞ u2ðxÞ . . . unðxÞ�
T is an element of the vector space W ¼ C4

½0;1� � Rn whose elements are
n-dimensional vectors of functions in C4

½0;1�. It can be shown [2] that if the operators for the individual structural
elements (Li) are self-adjoint then the matrix operator Kþ Kc is self-adjoint with respect to the inner product defined for
all u and v in W defined by

ðu; vÞW ¼
Z 1

0
vTu dx. (15)

Since M is a diagonal matrix this leads to the conclusion that M�1ðKþ KcÞ is self-adjoint with respect to a kinetic energy
inner product [2] defined as

ðu; vÞM ¼

Z 1

0
vTMu dx. (16)

The eigenvalues of a self-adjoint operator are real and the eigenvectors satisfy an orthogonality condition. If ui and uj are
mode shapes corresponding to distinct frequencies then

ðui;ujÞM ¼ 0. (17)

The matrix Kc is positive definite unless l0 ¼ 0 and ln ¼ 0 in which case it is positive semi-definite. If either K or Kc is
positive definite then Kþ Kc is positive definite. Then since M is positive definite, all eigenvalues of M�1ðKþ KcÞ are
positive. If K and Kc are positive semi-definite then Kþ Kc is positive semi-definite and the lowest natural frequency is zero
which has a corresponding rigid-body mode.

3. General case

In the most general case the coupled differential equations of Eq. (12) are linear ordinary differential equations with
constant coefficients. A solution is assumed of the form

uðxÞ ¼ a eax; (18)

where a is a n�1 vector of constants and a the constant to be determined. Substitution of Eq. (18) into Eq. (12) leads to a
set of algebraic equations of the form

ðKa þ KcÞa ¼ o2Ma, (19)

where Ka is a diagonal matrix with Kai;i
¼ LiðaÞ, where LiðaÞ is a polynomial obtained by replacing the differential operator

d=dx by a in the operator Li.



ARTICLE IN PRESS

S.G. Kelly, S. Srinivas / Journal of Sound and Vibration 326 (2009) 883–893 887
Given a natural frequency, Eq. (19) may be used to determine the appropriate values of a. However the natural
frequencies are not known a priori and must be determined from Eq. (12), dependent on the values of a. Thus an iterative
procedure is necessary. A suggested procedure is
�
 Guess a value of o.

�
 For this value of o determine all values of a by setting jðKa þ KcÞ �o2Mj ¼ 0. This leads to a polynomial equation order 4n

in a where n is the number of elastically connected components. Thus there are 4n values of a. Since all coefficients are real,
when complex roots occur, they occur in complex conjugate pairs. Furthermore, since the differential operators include only
even order derivatives then the polynomial only includes even powers of a, in which case the roots occur in opposite signed
pairs; if a is a root then so is �a.

�
 A general solution is built using the calculated values of a. Purely imaginary values of a lead to trigonometric solutions.

Real values of a lead to hyperbolic trigonometric functions and complex conjugate roots lead to products of
trigonometric and hyperbolic trigonometric solutions. The most general solution is a linear combination of all solutions.
The coefficients in the linear combination are the constants of integration.

�
 Boundary conditions are applied to establish a set of homogeneous algebraic equations which must be satisfied by the

constants of integration.

�
 If the correct solution has been obtained then the determinant of the set of homogeneous equations must be zero. If not

the assumed value of o is not a natural frequency.

�
 The determinant of this homogeneous set of equations is a function of the parameter o. If o is a natural frequency then

the determinant must be zero, in order for a non-trivial solution for the constants of integration to exist.

�
 An iterative procedure is best employed to determine the natural frequencies, perhaps using a bracketing method. The

system has an infinite number of natural frequencies and it is generally desired to determine the frequencies
sequentially. Thus employing an open method such as the Newton–Raphson method will likely miss some frequencies.

�
 Computational problems will occur in determining larger frequencies due to evaluation of hyperbolic trigonometric

functions of large arguments.

�
 Once a natural frequency is obtained the corresponding mode shape is obtained by solving for the constants of

integration realizing that a unique solution does not exist.

A numerical algorithm may be developed to implement the above scheme. However computations are very difficult due
to very large exponential terms. A small change in a guess for the natural frequency can lead to a large change in the
determinant.

4. Identical beams

When all beams are identical (mi ¼ 1; bi ¼ 1; i ¼ 1;2; . . . ;n),

Kb þ Ka ¼ I
d4

dx4
� �

d2

dx2

 !
, (20)

and M ¼ I, where I is the n�n identity matrix.
Consider the problem for the natural frequencies, d and corresponding mode shapes fðxÞ of a single stretched beam

fiv
� �f00 ¼ d2f; (21)

where appropriate boundary conditions are applied. When solved the problem yields an infinite, but countable, number of
natural frequencies, d1od2o � � �odk�1odkodkþ1o � � �. Each natural frequency has a corresponding mode shape fkðxÞ.
Mode shape orthogonality implies that Z 1

0
fjðxÞfkðxÞdx ¼ 0 (22)

for jak. Mode shapes are normalized by requiring

Z 1

0
½fkðxÞ�

2 dx ¼ 1. (23)

A solution of Eq. (12) when the operator stiffness matrix is of the form of Eq. (20) is assumed as

u ¼ afðxÞ (24)

which leads to

Iðfiv
� �f00Þaþ Kcaf ¼ o2If. (25)
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Using Eq. (21) in Eq. (25) leads to

Kca ¼ ½o2 � d2
k �a. (26)

Eq. (26) is that of a matrix eigenvalue problem. The natural frequencies are of the form

ok;j ¼ ðd
2
k þ njÞ

1=2, (27)

where k ¼ 1;2; . . . ; j ¼ 1;2; . . . ;n, and njj ¼ 1;2; . . . ;n are the eigenvalues of the coupling matrix Kc.
For each value of d there are n natural frequencies and mode shapes. Thus the natural frequencies can be indexed by ok;j

where k ¼ 1;2; . . . ; and j ¼ 1;2; . . . ;n and the corresponding mode shapes are

uk;j ¼ ajfkðxÞ; (28)

where aj is the eigenvector of Kc corresponding to the eigenvalue nj. The eigenvectors are normalized by requiring aT
j aj ¼ 1.

Eqs. (27) and (28) show that the modes for a set of identical beams can be organized into an infinite number of sets, each
with n modes. Modes with the same first index have the same spanwise displacement, but with a different amplitude.
These are called intramodal modes. Modes corresponding to different values of the first index have different spanwise
variations and are called intermodal modes.

5. Rayleigh–Ritz approximations

The natural frequencies and mode shapes are difficult to obtain for the general case. Application of the Rayleigh–Ritz method
provides an alternative to obtain good approximations for the natural frequencies and mode shapes. Let qi i ¼ 1;2; . . . ; p be k

n-dimensional vectors of functions of x, each of which satisfy all geometric boundary conditions. For simplicity assume

qi ¼ ziciðxÞ (29)

for i ¼ 1;2; . . . ; p and where zi is a n-dimensional vector of constants and ciðxÞ satisfies all geometric boundary conditions. The
Rayleigh–Ritz approximation for a mode shape is

w ¼
Xk

i¼1

ciziciðxÞ. (30)

Minimization of Rayleigh’s quotient leads to the following matrix eigenvalue problem for the natural frequency and mode shape
approximations as

Krc ¼ o2Mrc, (31)

where c ¼ ½c1 c2 . . . ck�
T, the elements of the p�p Rayleigh stiffness matrix are

Kr;i;j ¼

Z 1

0
zT

j cjðKc þ KaÞzici dx, (32)

and the elements of the k� k Rayleigh mass matrix are

Mr;i;j ¼

Z 1

0
zT

j cjMzici dx. (33)

Eq. (32) is used when each ciðxÞ satisfies all geometric and natural boundary conditions. Integration by parts leads to an alternate
form of Eq. (32) as

Kr;i;j ¼

Z 1

0

d2ci

dx2

d2cj

dx2
dxþ cjð1Þc

000
i ð1Þ �cjð0Þc

000
i ð0Þ � c0jð1Þc

00
i ð1Þ þc0jð0Þc

00
i ð0Þ

 !
zT

j Dzi

þ �
Z 1

0

dci

dx

dcj

dx
dx� cjð1Þc

0
ið1Þ þ cjð0Þc

0
ið0Þ

 !
zT

j zi þ

Z 1

0
cicj dx

 !
zT

j Kczi, (34)

where D ¼ diagðm1;m2; . . . ;mnÞ.
If the beam is fixed–fixed all boundary conditions are geometric and Eqs. (32) and (34) are identical. If the beam is

pinned–pinned or fixed–pinned it is likely that the basis functions are chosen to satisfy the natural boundary condition at a
pinned support and the both equations are satisfied. If the beam has a free end, say at x ¼ 1, then the appropriate non-
dimensional boundary condition is miw

000
i ð1Þ ¼ �w

0
ið1Þ.

An obvious choice of basis vectors is the partial set of mode shape vectors for elastically connected Euler–Bernoulli
beams without stretching. The problem for the natural frequencies and mode shapes for a set of elastically coupled
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Euler–Bernoulli beams is

ðKb þ KcÞw ¼ o2Mw. (35)

A procedure similar to that used for identical elastically connected stretched beams is employed leading to solutions of
Eq. (35) of the form

wk;j ¼ ak;jfkðxÞ (36)

for k ¼ 1;2; . . . ;and j ¼ 1;2; . . . ;n and where fkðxÞ k ¼ 1;2; . . . are the mode shapes for a single beam and ak;j j ¼ 1;2; . . . ;n
are the eigenvectors of the matrix eigenvalue problem

ðd4
kDþ KcÞa ¼ o2Ma, (37)

where fiv
k ¼ d4

kfk and all boundary conditions are satisfied. Note that the beam functions satisfy the same boundary
conditions as the stretched beam for fixed and pinned ends, but not for free ends.

6. Examples

6.1. Identical pinned–pinned beams

Consider a set of n identical elastically connected pinned–pinned axially loaded beams. The exact natural frequencies for

a single axially loaded pinned–pinned beam are ok ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4p4 þ �k2p2

q
which have corresponding normalized mode shape

vectors of ukðxÞ ¼
ffiffiffi
2
p

sinðkpxÞ; k ¼ 1;2; . . .. Then from Eq. (27) the exact natural frequencies of the elastically connected

beams are

ok;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4p4 þ �k2p2 þ nj

q
, (38)

where k ¼ 1;2; . . . ; and for each k, j ¼ 1;2; . . . ;n. The normalized mode shape corresponding to the natural frequency
ok;j is

uk;j ¼
ffiffiffi
2
p

aj sinðkpxÞ, (39)

where nj j ¼ 1;2; . . . ;n are the eigenvalues of Kc and aj are their corresponding normalized eigenvectors.

The set of natural frequencies ok;j for each k with j ¼ 1,2,y,n constitute a set of n intramodal frequencies for the kth
mode. For large k, all intramodal frequencies approach k2p2, the natural frequencies of an Euler–Bernoulli beam without
axial loading. Each mode shape is a product of a spatial mode shape fkðxÞ ¼

ffiffiffi
2
p

sinðkpxÞ and a discrete mode shape aj. The
coupling only has a small effect on the numerical values of large frequencies but provides the discrete component of the
mode shapes.

Consider a coupling matrix of the form

Kc ¼

1000 �1000 0 0 0

�1000 2000 �1000 0 0

0 �1000 2000 �1000 0

0 0 �1000 2000 1000

0 0 0 �1000 2000

2
6666664

3
7777775

. (40)

The eigenvalues and eigenvectors of the coupling matrix are determined such that the kth set of intramodal natural
frequencies are

ok;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4p4 þ �k2p2

q
, (41a)

ok;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4p4 þ �k2p2 þ 382:0

q
, (41b)

ok;3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4p4 þ �k2p2 þ 1:382� 103

q
; (41c)

ok;4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4p4 þ �k2p2 þ 2:618� 103

q
, (41d)

and

ok;5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4p4 þ �k2p2 þ 3:618� 103

q
: (41e)
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The normalized mode shape vectors for the kth mode are

uk;1 ¼
ffiffiffi
2
p

0:4472

0:4472

0:4472

0:4472

0:4472

2
6666664

3
7777775

sinðkpxÞ; uk;2 ¼
ffiffiffi
2
p

0:6015

0:3717

0

�0:3717

�0:6015

2
6666664

3
7777775

sinðkpxÞ;uk;3 ¼
ffiffiffi
2
p

0:5117

�0:1954

�0:6325

�0:1954

0:5117

2
6666664

3
7777775

sinðkpxÞ,

uk;4 ¼
ffiffiffi
2
p

0:3717

�0:6015

0

0:6015

�0:3717

2
6666664

3
7777775

sinðkpxÞ; and uk;5 ¼
ffiffiffi
2
p

0:1954

�0:5717

0:6325

�0:5717

0:1954

2
6666664

3
7777775

sinðkpxÞ. (42)

The natural frequencies of a set of identical pinned–pinned Euler–Bernoulli beams without stretching are

ok;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4p4 þ nj

q
and their corresponding mode shapes are the same as those for the stretched beams. When these

mode shapes are used as basis functions for a Rayleigh–Ritz approximation to approximate the natural frequencies and
mode shapes for the corresponding stretched beams the exact solution results.

6.2. Identical fixed–free beams

Now consider a set of identical fixed–free beams. The natural frequencies for a single stretched fixed–free beam are the
solutions of

Z5 þ Zn4 � Z�n2 �
Z4�
n

cosh2
ðZÞ � �Z3 sinh2

ðZÞ þ ð2Z3n2 � Z3�� Z2n�Þ coshðZÞ cosðnÞ

þ ðZ2n3 � Z4n� 2�Z2nÞ sinhðZÞ sinðnÞ ¼ 0, (43)

where

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 4o2

p
þ �

2

" #1=2

(44a)

and

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 4o2

p
� �

2

" #1=2

. (44b)

For � ¼ 1 the first three sets of intramodal frequencies for a set of five elastically connected axially loaded beams are
determined from Eq. (27) as

o1;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:169þ nj

q
, (45a)

o2;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
515:29þ nj

q
, (45b)

and

o3;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:764x103

þ nj

q
(45c)

for j ¼ 1;2; . . . ;5.
The characteristic equation for the natural frequencies of a set of unstretched Euler–Bernoulli fixed–free beams is

cos d cosh d ¼ �1. The corresponding normalized mode shapes are of the form

ckðxÞ ¼ coshðdkxÞ � cosðdkxÞ � ak½sinhðdkxÞ � sinðdkxÞ�, (46)

where

ak ¼
cos dk þ cosh dk

sin dk þ sinh dk
. (47)
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A set of 15 basis functions for a Rayleigh–Ritz approximation for the natural frequencies and mode shapes of the stretched
beam are of the form of Eq. (36) for k ¼ 1;2;3 and j ¼ 1;2; . . . ;5, where fkðxÞ are given by Eq. (46) and aj’s are the same as
the discrete mode shape vectors of Eq. (42).

The elements of the Rayleigh stiffness matrix are of the form

Kr;i;j ¼

Z 1

0

d2ci

dx2

d2cj

dx2
dxþcjð1Þc

000
i ð1Þ �c0jð1Þc

00
i ð1Þ

 !
zT

j Dzi

þ �
Z 1

0

dci

dx

dcj

dx
dx�cjð1Þc

0
ið1Þ

 !
zT

j zi þ

Z 1

0
cicj dx

 !
zT

j Kczi. (48)

6.3. Non-identical fixed–fixed beams

Consider a set of five fixed–fixed beams with m1 ¼ 1; m2 ¼ 4; m3 ¼ 9; m4 ¼ 16; m5 ¼ 25, b1 ¼ 1; b2 ¼ 2; b3 ¼ 3; b4 ¼ 4;
and b5 ¼ 5. The beams are elastically connected with a coupling matrix of

Kc ¼

800 �800 0 0 0

�800 1600 �800 0 0

0 �800 1600 �800 0

0 0 �800 1600 �800

0 0 0 �800 2400

2
6666664

3
7777775

. (49)

Eq. (49) is the coupling matrix for a system of five elastically connected beams with l0 ¼ 0; l1 ¼ 800; l2 ¼ 800;
l3 ¼ 800; l4 ¼ 800; and l5 ¼ 800. The fifth beam is connected to a Winkler foundation.

Fifteen basis functions are used in the Rayleigh–Ritz approximation to approximate the natural frequencies and mode
shapes for the set of five elastically connected beams. They are chosen as the normalized mode shapes for the first three
sets of intramodal frequencies for a set of beams with � ¼ 0. The mode shapes for an unstretched fixed–fixed
Euler–Bernoulli beam are

fkðxÞ ¼ coshðdkxÞ � cosðdkxÞ �
coshðdkÞ � cosðdkÞ

sinhðdkÞ � sinðdkÞ
½sinhðdkxÞ � sinðdkxÞ�: (50)

The three lowest values of dk are d1 ¼ 4:730; d2 ¼ 7:852, and d3 ¼ 10:996. The discrete part of the basis functions are the
eigenvectors of Kc þ d4

kD normalized using the inner product of Eq. (16). The 15 basis functions are

z1 ¼

�0:189

�0:252

�0:326

�0:321

�0:146

2
6666664

3
7777775
f1ðxÞ; z2 ¼

0:354

0:371

0:193

�0:197

�0:258

2
6666664

3
7777775
f1ðxÞ; z3 ¼

0:321

0:239

�0:112

�0:239

0:321

2
6666664

3
7777775
f1ðxÞ; z4 ¼

0:442

0:182

�0:405

0:225

�0:083

2
6666664

3
7777775
f1ðxÞ,

z5 ¼

�0:736

0:457

�0:116

0:019

�0:003

2
6666664

3
7777775
f1ðxÞ; z6 ¼

0:008

0:035

0:134

0:330

0:319

2
6666664

3
7777775
f2ðxÞ; z7 ¼

�0:020

�0:081

�0:244

�0:291

0:306

2
6666664

3
7777775
f2ðxÞ; z8 ¼

0:067

0:235

0:462

�0:236

0:068

2
6666664

3
7777775
f2ðxÞ,

z9 ¼

�0:262

�0:633

0:205

�0:032

0:004

2
6666664

3
7777775
f2ðxÞ; z10 ¼

�0:963

0:190

�0:017

0:001

�0:00004

2
6666664

3
7777775
f2ðxÞ; z11 ¼

0:0001

0:001

0:017

0:129

0:432

2
6666664

3
7777775
f3ðxÞ; z12 ¼

0:0007

0:010

0:096

0:470

�0:116

2
6666664

3
7777775
f3ðxÞ,

z13 ¼

�:006

�0:085

�0:565

0:085

�0:006

2
6666664

3
7777775
f3ðxÞ; z14 ¼

0:077

0:700

�0:070

0:085

�0:006

2
6666664

3
7777775
f3ðxÞ; and z15 ¼

0:997

�0:054

0:001

�0:00002

0:0000003

2
6666664

3
7777775
f3ðxÞ. (51)
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Table 1
Rayleigh–Ritz coefficients corresponding to o3,3 for e ¼ 250.

j aj

1 0.012

2 0.036

3 0.048

4 �0.026

5 9.65�10�3

6 8.51�10�6

7 �1.49�10�4

8 �3.98�10�4

9 1.82�10�4

10 �9.02�10�5

11 �1.56�10�4

12 �0.073

13 �0.99

14 0.102

15 0.014
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Fig. 2. Variation of natural frequencies of five elastically connected axially loaded beams with the non-dimensional stretching parameter e.
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Since the basis functions satisfy the boundary conditions for a fixed–fixed beam Eq. (34) simplifies to

Kr;i;j ¼

Z 1

0

d2ci

dx2

d2cj

dx2
dx

 !
zT

j Dzi

Z 1

0
cicj dx

 !
zT

j Kczþ �
Z 1

0

dci

dx

dcj

dx
dx

 !
zT

j zi. (52)

Furthermore the basis functions satisfy the orthogonality conditions such thatZ 1

0
fiðxÞfjðxÞdx ¼ di;j

and for each set of intramodal mode shape vectors uk;j, k ¼ 1,2,3 and j ¼ 1,2,y,5, uT
k;j

Muk;‘ ¼ dj;‘ and uT
k;j
ðKb þ DÞ

uk;‘ ¼ o2
k;j
dj;‘ . Application of the orthogonality conditions reduces Eq. (51) to

Kr;i;j ¼ Oþ �
Z 1

0

dci

dx

dcj

dx
dx

 !
zT

j zi, (53)

where O is a diagonal matrix with the squares of the natural frequencies for the unstretched beams along the diagonal.
The Rayleigh–Ritz mass matrix of Eq. (33) is the identity matrix.

Use of the basis functions of Eq. (51) in the Rayleigh–Ritz method leads to approximations for 15 natural frequencies and
mode shapes. Three of the approximations are illustrated in Fig. 1 as functions of the parameter e. The natural frequencies
are labeled according to their number corresponding to � ¼ 0 for which there are a set of intramodal modes for each
spatially varying mode However for the non-identical stretched beams the modes cannot truly be classified using the terms
intramodal and intermodal. The Rayleigh–Ritz approximation for each mode is a linear combination of all mode shapes of
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Eq. (51). The coefficients multiplying mode shapes not corresponding to the spatial mode would all be zero for all modes in
an intramodal set. This is not the case as evidenced by Table 1 which contains the components of the mode shape vector
corresponding to o3;3 for � ¼ 250. This mode shape has significant components from the first set of intramodal modes as
well as the third set. The components for the second set are much smaller as the first and third modes are even functions
when reflected about x ¼ 0.5 while the second mode is an odd function when reflected about x ¼ 0.5 (Fig. 2).

7. Conclusions

The problem of stretched beams connected by elastic layers is considered. A normal-mode solution is applied to the
governing partial differential equations to derive a set of coupled ordinary differential equations which are used to
determine the natural frequencies and mode shapes. It is shown that the set of differential equations can be written in s
self-adjoint form with an appropriate inner product.

An exact solution for the general case is obtained, but numerical procedures must be used to determine the natural
frequencies and mode shapes. The numerical procedure is difficult to apply, especially in determining higher frequencies.
For the special case of identical beams, an exact expression for the natural frequencies is obtained in terms of the natural
frequencies of a corresponding set of unstretched beams and the eigenvalues of the coupling matrix.

A Rayleigh–Ritz method is developed in which the mode shape vectors for the corresponding set of unstretched beams
are used as basis functions. A beam with a free end is a special case because the boundary conditions satisfied by the
stretched beam at the free end are different than the boundary conditions satisfied by the corresponding unstretched
beams.

The modes for the unstretched beams may be classified as intramodal and intermodal where intermodal refers to
different mode shapes over the span of the beam and intramodal refers to the different discrete mode shapes across the
beams for the same mode shape across the span. This categorization can also be applied to the mode shapes for the
stretched beams in the special case where all beams are identical.

The Rayleigh–Ritz method is used to develop mode shapes and natural frequencies for sets of non-identical beams. Its
application shows that as the stretching parameter increases the mode shapes which are solely intramodal for a set of
unstretehd beams develop components from other modes.
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